Data Management for Efficient Phenotypic and Genomic Selection in Applied Breeding Programs

Rich Horsley, Ana Heilman, and Tom Walk

Table 1. Barley yields (bu/ac) of 2ND25276 and other barley cultivars grown in North Dakota barley breeding program yield trials, 2007-2014.

	Location								
			Langdon/			Nesson			
Entry	Carrington	Fargo	Osnabrock	McVille	Minot	Valley	Sidney	Williston	Mean
Sta. Years	12	19	6	17	11	12	10	16	105
2ND25276	112.5	78.5	107.6	63.4	103.2	115.8	116.0	70.7	91.3
Conlon	101.5	65.2	97.6	59.5	81.9	100.3	105.8	73.1	81.7
Pinnacle	97.8	71.8	108.3	60.0	92.3	115.1	112.8	72.3	86.7
Lacey	112.3	74.8	100.8	58.6	98.6	112.1	116.4	70.2	88.4

Table 2. Malt	Table 2. Malt quality comparisons of 2ND25276 and other barley cultivars grown in North Dakota							
yield trials	, 2007-2014	1 [†] .						
	Barley	Plump	Malt	Wort		Diastatic	Alpha-	Beta-
	protein	kernels	extract	protein	S/T	power	Amylasc	glucan
Entry	(%)	(%)	(%)	(%)	$(\%)^{\ddagger}$	(°L)	(20° DU)	(ppm)
Sta. Yrs.	33	40	26	26	26	26	26	26
2ND25276	11.7	92.3	81.8	5.42	47.8	118	89.8	154
Conlon	13.3	93.9	80.3	5.14	39.5	138	78.0	366
Pinnacle	11.7	90.3	81.6	4.91	43.8	116	70.2	227
Lacey	13.7	85.8	79.4	5.68	42.6	189	77.5	125
Data courtesy	Data courtesy of the USDA-ARS Cereal Crops Research Unit, Madison, WI.							

[†]Soluble protein to total protein ratio.

Table 3.	Disease reaction	in the greenhouse f	to spot-form r	iet blotch d	isease for 2NE	25276 and
repres	sentative cultivars	entered in the Mis	sissippi Valle	y Barley N	ursery (MVBN	I), 2010-2013 [†]

	Greenhouse Spot-Form Net Blotch (rating) [‡]					
	2010	2011	2012	2013	Mean	
2ND25276	3.0	2.0	5.0	2.0	3.0	
Morex	7.0	7.0	5.0	3.0	5.5	
Robust	3.0	3.0	3.0	3.0	3.0	
Legacy	3.0	3.0	3.0	3.0	3.0	
Lacey	3.0	3.0	7.0	2.0	3.8	
Tradition	5.0	3.0	7.0	3.0	4.5	
Pinnacle	7.0	7.0	5.0	7.0	6.5	

¹Data courtesy of Agriculture and Agri-Food Canada – Cereal Research Centre, Winnipeg, Manitoba.

¹Reaction categories: 10=VS, 9=S, 7=MS, 5=MR-MS, 3=MR, 1=R

Table 4. Disease reaction to spot blotch disease for 2ND25276, representative cultivars and resist	an
and susceptible controls in field tests in 2011-2014 ^{\dagger} .	

*	Row	Field Spot Blotch (percent) ⁺					
Entry	type	2011	2012	2013	2014	Mean	
2ND25276	2	38.3	18.3	6.3	18.3	20.3	
Conlon	2	30.0	53.3	20.0	20.0	30.8	
Lacey	6	18.3	8.3	6.7	6.3	9.9	
Pinnacle	2	25.0	40.0	12.3	23.3	25.2	
Rawson	2	35.0	16.7	9.0	16.7	19.4	
Stellar-ND	6	25.0	10.7	5.0	11.3	13.0	
Tradition	6	28.0	11.7	5.7	7.3	13.2	
NDB112 ⁸	6	25.0	11.7	5.0	5.0	11.7	
ND5883 ¹	6	60.0	46.4	28.4	45.0	45.0	

[†]Data courtesy of Drs. Stephen Neate and Robert Brueggeman, Department of Plant Pathology, NDSU.

[‡]Numbers indicate percentage of leaf surface covered by lesions.

[§]Resistant control

[¶]Susceptible control

Table 5. Deoxynivalenol (DON) accumulation for 2ND25276, representative cultivars, and Fusarium head blight (FHB) resistant and susceptible controls in field tests in 2009-2013. These trials were irrigated and inoculated and typically gave higher disease and DON than experienced by farmers.

	Row			DON	$(ppm)^{\dagger}$		
Entry	type	2009	2010	2011	2012	2013	Mean
Sta. Yrs.		2	2	2	2	2	10
2ND25276	2	47.5	21.4	5.3	7.4	4.6	17.2
Robust	6	59.5	35.6	7.5	11.1	6.2	24.0
Lacey	6	55.0	24.9	10.5	15.5	5.3	22.2
Tradition	6	41.9	30.2	9.6	6.5	5.0	18.6
Stellar-ND	6	35.3	23.8	7.9	8.8	8.8	16.9
Quest [‡]	6	34.0	24.9	4.4	10.4	3.2	15.3
Conlon	2	28.8	20.1	3.1	3.1	3.0	11.6
Pinnacle	2	65.7	25.6	5.3	6.9	3.8	21.4
ND20493 ⁹	6	12.5	4.0	5.8	3.5	3.4	5.8

¹Data courtesy of Dr. Paul Schwarz, NDSU Department of Plant Sciences. [‡] FHB-resistant cultivar

[§] Resistant control

NDSU Breeding Scheme

Year	Generatio n	Location	Process	Number of plants or lines	Number of locations
1	Crossing	Greenhouse (fall)	Crossing block	200 crosses	1
1	F ₁	Greenhouse (winter)	F ₁ increase	5,000 plants	1
1	F ₂	North Dakota (summer)	F ₂ selection	400,000 plants	1
2	F ₃	New Zealand or Puerto Rico	F ₃ advancement	85,000 plants	2
2	F ₄	North Dakota	Progeny rows	25,000 lines	1
3	F ₅	New Zealand or Arizona	Seed increase	5,000 lines	2
3	F ₆	North Dakota	Preliminary yield trials	1,200 lines	2
4	F ₇	North Dakota	Intermediate yield trials	160 lines	7
5	F ₈	North Dakota	Advanced yield trial	40 lines	7
6	F ₉	North Dakota	Variety yield trial (VYT)	10 lines	7
7	F ₁₀	North Dakota & region	VYT and AMBA Pilot Scale	8 lines	14
8	F ₁₁	North Dakota & region	VYT and AMBA Pilot Scale	4-8 lines	14
9	F ₁₂	North Dakota & region	VYT and AMBA Plant Scale	2 lines	20
10	F ₁₃	North Dakota & region	VYT and AMBA Plant Scale	2 lines	20

How Long Does it Take to Make These Tables?

- Balanced data vs. unbalanced data.
- How do you make similar tables for all lines in the program that have been tested two or more years?
- 200 lines * 30 minutes/table = 12.5 working days
- 200 lines * 4 hours/table = 20 weeks

How NDSU Is Addressing These Data Management Needs?

- Department identified bioinformaticists as a priority for the 2013 SBARE & Legislative process.
 - Hiring bioinformaticists
 identified as the top priority
 for the AES in the 2015
 SBARE & Legislative
 process.
 - Two Breeding Pipeline Data Managers hired in summer 2016.

Requirements for Efficient Data Management

- Single platform for managing
 - phenotype data
 - genotype data
- Single server for housing platforms and data.
- Automating routine processes (queries and calculation of means or BLUPs)

Why use a relational database?

Flat File Database	Relational Database
Adva	ntages
 Easy to use, quick start 	 High level of security (authentication process)
 No extra installation required 	 Powerful data organization and storage
 Analytic & graphing tools built-in 	 Data centralized, standardized & easily shared
	 Changes universally applied to all tables
	 Data easily queried, compiled, and analyzed
	 Intellectual property protection & compliance
Disadv	vantages
 Multiple files difficult to compile & compare 	Complex set-up
 Only understood by primary user in most cases 	Changes may be difficult
Prone to corruption	 Database needs to be well planned
More difficult to secure	 Requires experienced management
Data must be applied individually to each table	

• Data must be applied individually to each table

Managing Phenotype Data

Photo courtesy: Dr. Andrew J Green

- Breeding system management
- Randomizations
- Data collection on tablets
- Analyses of basic experimental designs
- Stores data and means in a relational database

B. Research on	oup selection		
Groups availab	ole to user - ana.h	eilman	
BEANS CHICKPEA DURUM ESBN FLAX LENTIL PEA			^
POTATO REDWHEAT SANDROX			
	Open	Cancel	License days remaining: 47

Data Management Work Plan at NDSU

- Educate and support breeders on use of technology platforms (e.g. Agrobase, T.3, JMP, and SAS)
- Integrate legacy data from breeding programs into DB.
- Automate data queries and calculations of:
 - Unbalanced means or BLUPS across years based on
 - Entry
 - Pedigree
 - Parents
 - Balanced means across years
 - Breeder requests
- Expand visualization capabilities for making decisions

Managing Genotype Data

File-DNA-Sequencers_from_Flickr_57080968.jpg

https://thumbs.dreamstime.com/z/genetic-fingerprinting-as-fingerprint-dnaemerging-out-as-medical-identification-symbol-paternity-test-64869820.jpg

NDSU NORTH DAKOTA STATE UNIVERSITY

https://www.extremetech.com/wp-content/uploads/2013/03/minion-usb-dna-sequencer.jpg

How do we Manage Genotype Data?

- 525 parents screened with 50,000 SNPs
 - 28.25 million data points
- 3,500 lines screened with 450 SNPs
 - 1.575 million data points
- How do you pair genotype data with phenotype data for GWAS or genomic selection?

NDSU Breeding Scheme

Year	Generatio n	Location	Process	Number of plants or lines	Number of locations
1	Crossing	Greenhouse (fall)	Crossing block	200 crosses	1
1	F ₁	Greenhouse (winter)	F ₁ increase	5,000 plants	1
1	F ₂	North Dakota (summer)	F ₂ selection	400,000 plants	1
2	F ₃	New Zealand or Puerto Rico	F ₃ advancement	85,000 plants	2
2	F ₄	North Dakota	Progeny rows	25,000 lines	1
3	F ₅	New Zealand or Arizona	Seed increase	5,000 lines	2
3	F ₆	North Dakota	Preliminary yield trials	1,200 lines	2
4	F ₇	North Dakota	Intermediate yield trials	160 lines	7
5	F ₈	North Dakota	Advanced yield trial	40 lines	7
6	F ₉	North Dakota	Variety yield trial (VYT)	10 lines	7
7	F ₁₀	North Dakota & region	VYT and AMBA Pilot Scale	8 lines	14
8	F ₁₁	North Dakota & region	VYT and AMBA Pilot Scale	4-8 lines	14
9	F ₁₂	North Dakota & region	VYT and AMBA Plant Scale	2 lines	20
10	F ₁₃	North Dakota & region	VYT and AMBA Plant Scale	2 lines	20

Application of Genomic Selection at NDSU

Favorable Phenotypes in the Arizona Winter Nursery

Weak Strawed 2-rowed Phenotypes in the Arizona Winter Nursery

The Triticeae Toolbox

https://triticeaetoolbox.org/ Home Home T3 Barley v Choose database T3 Wheat Toolbox (T3) T3 Barley T3/Oat generated by the Triticeae Coordinated Agricultural Project (CAP), funded by the Breeders Datafarm, Barley partment of Agriculture (USDA). T3 contains SNP, phenotypic, and pedigree data o integrate rapidly expanding DNA marker and sequence data with traditional phe T3 Wheat sandbox T3 Barley sandbox phenotype and enabling breeders to select on marker data alone. T3 will also line T3/Oat sandbox ene, PLEXdb, and GRIN) for functional analyses to identify causal polymorphism

The software and data structure for T3 were developed as part of the Barley CAP project for its database, The H

T3/Barley

https://triticeaetoolbox.org/barley/

Home Select - Analyze - Dow

Download - Reports - Manage -

e 🔹 Resources 👻

Quick Links

Login/Register

Current selections:

Lines: 0

Markers: All

Traits: 0

Phenotype Trials

Genotype Experiments

Quick search...

What's New

Danarta

Data Selection Physical Map added for IBSC 2016 assembly.

Home: T3/Barley

Welcome to The Triticeae Toolbox (T3)

T3 is the web portal for the data generated by the <u>Triticeae Coordinated Agricultural</u> Food and Agriculture (<u>NIFA</u>) of the United States Department of Agriculture (<u>USDA</u>) wheat and barley germplasm in the Triticeae CAP. <u>More...</u>

T3 Barley is an extension of The Hordeum Toolbox (THT), which was created by th the THT data.

Participants: The templates and instructions for data submission are <u>here</u>. If your out of Usage Policy.

Data submission

The Triticeae Toolbox

Home Select - Analyze - Download - Manage - About T3 -

Quick Links

Select Phenotypes

Login/Register

Select multiple options by holding down the Ctrl(PC) Command(Mac) key while clicking. Selecting traits and trials will NOT affect currently selected lines

Current selections:

Lines: 0

Markers: All

Traits: 0

Phenotype Trials

Genotype Experiments

Quick search...

What's New

Data Analysis Tools

Outlier detection on traits and trials using Bonferroni–Holm with Median Absolute Deviation (MAD).

Selection of optimized <u>training</u> sets for use in genomic prediction, using an R package called STPGA .

Download

Historical weather data using

NDSU NORTH DAKOTA STATE UNIVERSITY

Traits	Trials	Lines
net blotch (1-10)	15GHNB_2R	265
net blotch (1-10)	14GHNB_2R	356
net blotch (1-10)	13GHNB_2R	272
net blotch (1-10)	12GHNB_2R	247

Save Phenotype Selection

Category	Traits	Trials
Agronomic Disease Malting quality Morphological Quality for food and other uses Winter growth habit	FHB Severity leaf rust (0-9) leaf rust (LR30) (0-4) leaf rust (LR8) (0-4) leaf rust seedling net blotch (1-10) net blotch net form reaction type (0-9) powdery mildew (0-4) powdery mildew (0-9) scald (0-8)	15GHNB_2R15GHNB_6R14GHNB_2R14GHNB_6R13GHNB_6R12GHNB_2R12GHNB_6R12GHNB_6R12GHNB_6RABAR_2009_BlacksburgHSADV_2009_Blacksburg

Having Data in Databases Allows for Optimization of:

- Markers to include for genomic selection.
- Lines to use in training population.
- Statistical models to use for genomic selection of specific traits.
- Predictions of progeny performance from planned crosses.

Next Steps for NDSU Data Management Team

- Determine needs for hosting T3 locally and updating system to handle more crops.
- Develop Addins in JMP for automating queries and analyses.
- Make applications available on tablet and mobile devices for NDSU breeding programs.

Any Questions?

NDSU NORTH DAKOTA STATE UNIVERSITY

Yield Trials at Osnabrock, ND