

New tricks of an old enemy: *Fusarium graminearum* can also produce a type A trichothecene

<u>Elisabeth Varga^{1*}</u>, <u>Gerlinde Wiesenberger^{2*}</u>, Christian Hametner³, Todd Ward⁴, Yanhong Dong⁵, Denise Schöfbeck¹, Susan McCormick⁴, Karen Broz⁶, Romana Stückler², Rainer Schuhmacher¹, Rudolf Krska¹, H. Corby Kistler^{5,6}, Franz Berthiller¹, Gerhard Adam²

 ¹Christian Doppler Laboratory for Mycotoxin Metabolism and Center for Analytical Chemistry, Department for Agrobiotechnology (IFA-Tulln), University of Natural Resources and Life Sciences, Vienna (BOKU), 3430 Tulln, Austria;
 ²Department of Applied Genetics and Cell Biology, University of Natural Resources and Life Sciences, Vienna (BOKU), 3430 Tulln, Austria;

³Institute of Applied Synthetic Chemistry, Vienna University of Technology, 1060 Vienna, Austria;
 ⁴Bacterial Foodborne Pathogens & Mycology Research Unit, NCAUR, USDA, Peoria, IL 61604, United States;
 ⁵Department of Plant Pathology, University of Minnesota, St. Paul, MN 55108, United States;
 ⁶Agriculture Research Service, United States Department of Agriculture, St. Paul, MN 55108, United States.

Introduction

- Fusarium Head Blight disease (FHB)
 - caused by *Fusarium* spp.
 predominantly *Fusarium* graminearum
 - "the cereal killer" (wheat, barley, oats, ...)
 - loss of grain yield and quality
 - mycotoxin contamination: DON (vomitoxin)


```
Deoxynivalenol (DON)
```


- Trichothecene backbone structure
 - 12,13-epoxytrichothec-9-ene
 - > 200 different subtypes Grove J.F. (2007) Prog Chem Org Nat Prod. 88:63-130
 - Type B: keto at C8
 - Type A: either no oxygen at C8 (e.g. DAS) or oxygen function other than keto (T-2)

Background

US Fusarium graminearum population

- Large-scale population survey of *Fusarium graminearum* from the upper Midwestern United States (Corby Kistler group)
- <u>Aim</u>: determination of spatial and temporal dynamics

Three populations:

- "classical" 15-ADON genotype
- *"emergent"* 3-ADON genotype
- newly identified "Northland" population – contains "no-toxin" isolates: N

Gale et al. (2010) Fusarium head blight Forum

Session 2: Pathogen Biology & Genetics

A SUBSET OF THE NEWLY DISCOVERED NORTHLAND POPULATION OF *FUSARIUM GRAMINEARUM* FROM THE U.S. DOES NOT PRODUCE THE B-TYPE TRICHOTHECENES DON, 15ADON, 3ADON OR NIV Liane R. Gale^{*1}, Todd J. Ward² and H. Corby Kistler^{1,3}

¹Dept. of Plant Pathology, University of Minnesota, St. Paul, MN; ²USDA-ARS, National Center for Agricultural Utilization Research Laboratory, Peoria, IL; and ³USDA-ARS, Cereal Disease Laboratory, St. Paul, MN ^{*}Corresponding Author: PH: (612) 625-9266; E-mail: lianeg@umn.edu

No-toxin strains: useful as biocontrol organism?

Session 2: Pathogen Biology & Genetics

PREINOCULATION OF WHEAT HEADS WITH A NONTOXIGENIC *FUSARIUM* ISOLATE INHIBITS DEOXYNIVALENOL PRODUCTION BY A TOXIGENIC PATHOGEN Gary Y. Yuen^{1*}, C. Christine Jochum¹, Liangcheng Du², Isis Arreguin² and Liane R. Gale³

¹Dept. of Plant Pathology, University of Nebraska, Lincoln, NE 68583; ²Dept. of Chemistry, University of Nebraska, Lincoln, NE 68588; and ³Dept. of Plant Pathology, University of Minnesota, MN 55108 ^{*}Corresponding Author: PH: (402) 472-3125; E-mail: gyuen1@unl.edu

.... disease symptoms by N-strains (2010 Forum)

Hypothesis: N-strains produce a new toxin?

Analysis of N-strains

- 3-ADON-genotype
- Wheat ears (naturally contaminated)
 - normal aggressiveness and disease symptoms (premature bleaching)
 - no detectable levels of common trichothecenes (DON, ADONs, NIV)
- Rice culture extracts
 - Multi-mycotoxin method (LC-MS > 200 metabolites) no known trichothecences detectable heavy ZEN-producer

Vishwanath V. et al. (2009) Anal Bioanal Chem. 395:1355-1372

 Volatiles analyzed by GC-MS (headspace) trichodiene found
 → TRI5 gene is active

Screen for unknown metabolites LC-MS full scan

- Rice inoculated with Fusarium graminearum for 3 weeks
 - total ion chromatograms (ESI pos)

Isolation and purification NP and RP chromatography

- Cultivation on autoclaved rice
- Normal phase chromatography
 - silica gel (80 x 4 cm, 63-200 μm particle size)
 - elution with ethyl acetat/petroleum ether
- Preparative reversed phase HPLC
 - Phenomenex Gemini NX (150 x 21.2 mm, 5 μm)
 - water methanol gradient
- Yield: 20-50 milligramms of substance

Compound characterisation High resolution MS + comparison with known compounds

■ NX-2: m/z 325.1643 $\rightarrow C_{17}H_{24}O_6$ ($\Delta m = 0.8$ ppm)

 \rightarrow same sum formula as monoacetoxyscirpenol

Purification/structure elucidation Purification and NMR

- Trichothecene backbone with 3-OH groups, one acetylated
- ID- and 2D-NMR
 - \rightarrow structure similar to 3-MAS
 - \rightarrow differ in the position of the hydroxyl-groups

3α-acetoxy, **7α**, **15-dihydroxy-12**, **13-epoxytrichothe-9-ene**

(3-ADON lacking C8-keto group: type A)

Hypothesis Deacetylation *in planta*

Plants might deacetylate NX-2
 → might be more toxic (e.g. 3-ADON vs. DON)

- Production of deacetylated form via basic hydrolysis purification via preparative HPLC
 - structure confirmed by NMR

Toxicity tests

In vitro translation inhibition

- Inhibition of protein synthesis
 - rabbit reticulocyte lysate
 - reporter gene: activity of fire fly luciferase

NX-3 has similar toxicity as DON

- Inhibition of protein synthesis
 - rabbit reticulocyte lysate
 - assessment: activity of fire fly luciferase

Relevance for plant breeding / Fusarium resistance management?

• What is the molecular basis of NX-production? The relevant change can be used for molecular diagnostics ...

 Does NX-production allow the fungus to adapt to resistant cultivars? (durability of resistance?)

Biosynthetic pathway proposed pathway to NX-2

TRI1 swap experiment outline

TRI1 swap experiment transformation strategy

- 1. co-transform $tri1\Delta$ strain with *TRI1* construct and plasmid containing a truncated *PKS12* and nptII and select for G418 resistance
- 2. screen G418 resistant transformants for hygromycin sensitive strains
- 3. sporulate and screen for G418 sensitive/red offspring

Confirmation of swapped alleles

TRI1 swap experiment isolation of "new" metabolites

newly constructed strains:

- inoculated autoclaved rice, grew cultures for 2 weeks
- purified main products of both strains by preparative reversed phase HPLC
- identified structures by NMR

TRI1 swap experiment characterization of metabolites

Novel Fusarium graminearum population? (3ADON genotype)

- Despite FHB symptoms

 → no known trichothecenes produced
- Novel mycotoxin discovered: NX-2
- Wheat inoculation: major metabolite NX-3 concentrations up to 500 mg/kg
- Deacetylation also shown in vitro (wheat germ extract)
- Toxicity of NX-3 comparable to that of DON/NIV (ribosome)
- Altered TRI1 allele is responsible for specific oxidation at C7 in Northland metabolites

Summary

Publication:

in press

Environmental Microbiology (2014)

doi:10.1111/1462-2920.12718

New tricks of an old enemy: isolates of *Fusarium graminearum* produce a type A trichothecene mycotoxin

Selective advantag of NX-3 versus DON?

γGluHN NHGly S H H O H HO HO

DON: **conjugated double bond + keto group** Michael adduct with thiols possible!

Glutathione-mediated DON-detoxification may be the basis of resistance QTL deployed by breeders

Organic & Biomolecular Chemistry

View Article Online View Journal | View Issue

PAPER

Cite this: Org. Biomol. Chem., 2014, 12, 5144

Methylthiodeoxynivalenol (MTD): insight into the chemistry, structure and toxicity of *thia*-Michael adducts of trichothecenes[†]

Philipp Fruhmann,‡^a Theresa Weigl-Pollack,‡^a Hannes Mikula,*^a Gerlinde Wiesenberger,^b Gerhard Adam,^b Elisabeth Varga,^c Franz Berthiller,^c Rudolf Krska,^c Christian Hametner^a and Johannes Fröhlich^a

Thiol-adduct formation is a detoxification reaction

S-methyl-DON (Kushalappa, 2010 Fusarium head blight forum) or methylthio-DON is less toxic – this should also be true for the bulky DON-glutathione and DON-Cys adducts (found *in planta*)