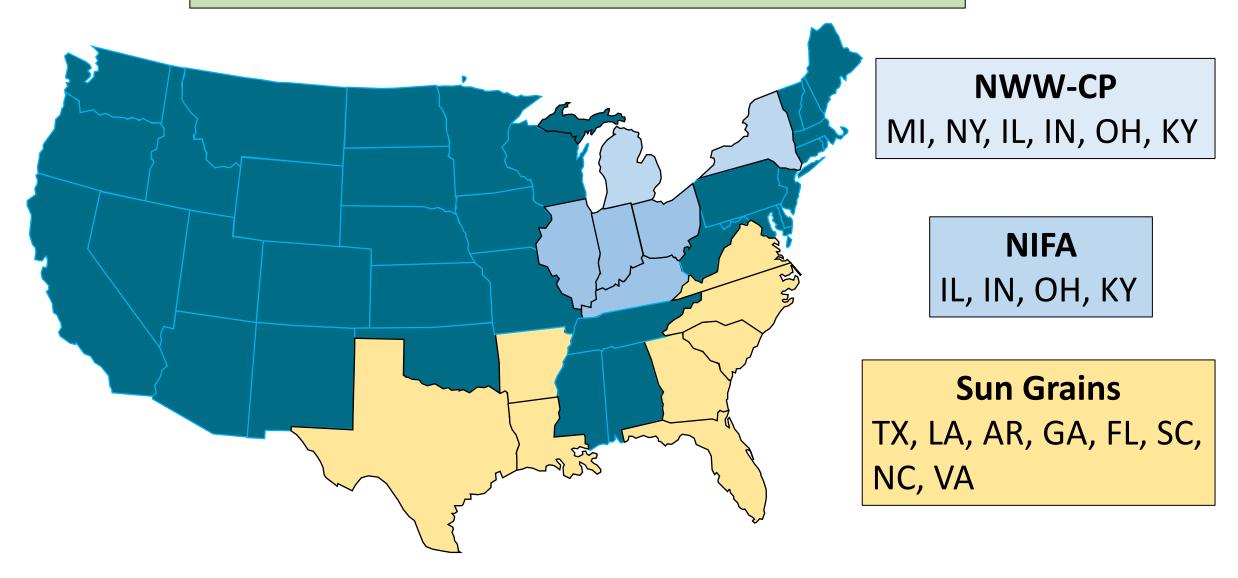
Breeding Consortiums: Using Genomic Selection to Increase Regional Impact

> Paul Murphy, North Carolina State University Clay Sneller, The Ohio State University Gina Brown-Guedira, USDA-ARS Jeanette Lyerly, North Carolina State University Brian Ward, The Ohio State University Carlos Ignacio, The Ohio State University

Soft Red Winter Wheat "Consortiums"



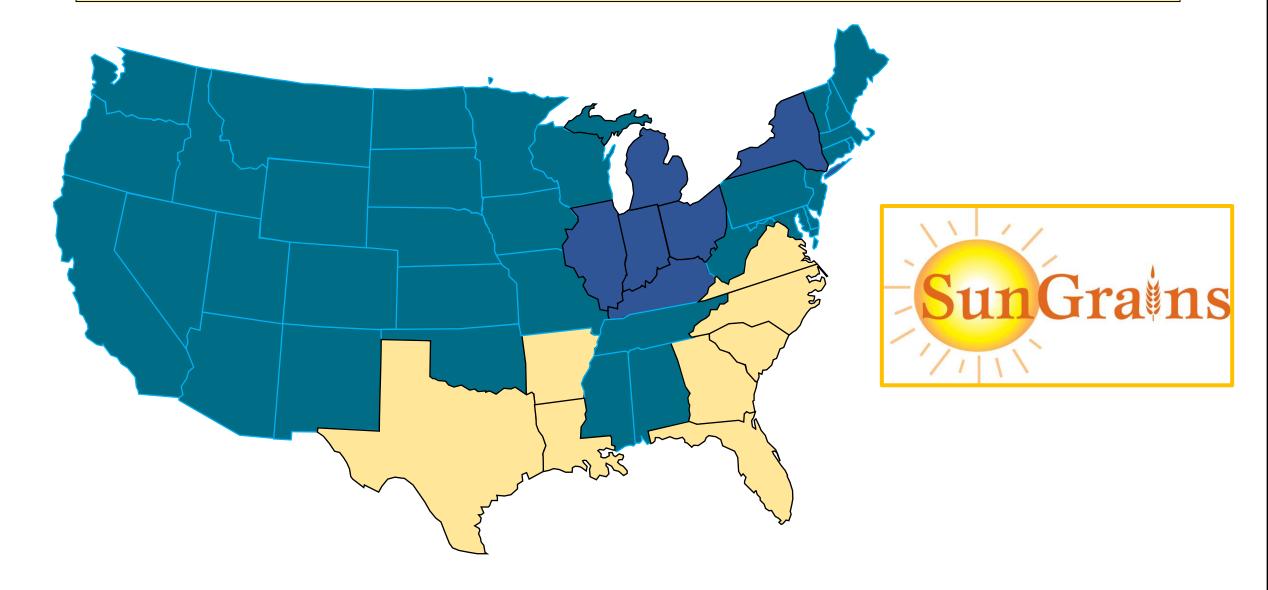
Potential Benefits of a GS Consortium

- Increase Effective Size of Individual Programs: Predict the local value of all breeding lines from all stages of testing from each cooperator
- Increase size of "cooperative trials": Accomplished the goals of uniform trials without extensive phenotyping and apply it to all stages of testing.
- **Predict Traits Values for Traits you Did Not Phenotype:** Allow each breeder to predict the value of their germplasm for traits they do not assay
- Exploit GEI by incorporating marker by environment interactions (MEI)
- Understand the relative genetic diversity and genetic value of regional germplasm.

Requirements for Consortium Success

- **1. Germplasm among the member programs must be related**
- 2. Germplasm from each member offers value to the other members
- 3. Development of optimal breeding and testing schemes
- 4. A common, affordable marker platform
- 5. Communication among members
- 6. Common data base for storing phenotypic and genotypic data
- 7. Skills is GS analyses
- 8. Coordinator for organizing samples, data files, and executing analyses across programs, and possibly within some programs
- 9. Funds for genotyping

Experience of the Sun Grains Consortium



Theoretical and Applied Genetics (2019) 132:1247–1261 https://doi.org/10.1007/s00122-019-03276-6

ORIGINAL ARTICLE

Training population selection and use of fixed effects to optimize genomic predictions in a historical USA winter wheat panel

J. Martin Sarinelli¹ · J. Paul Murphy¹ · Priyanka Tyagi¹ · James B. Holland^{1,2} · Jerry W. Johnson³ · Mohamed Mergoum³ · Richard E. Mason⁴ · Ali Babar⁸ · Stephen Harrison⁵ · Russell Sutton⁶ · Carl A. Griffey⁷ · Gina Brown-Guedira^{1,2}

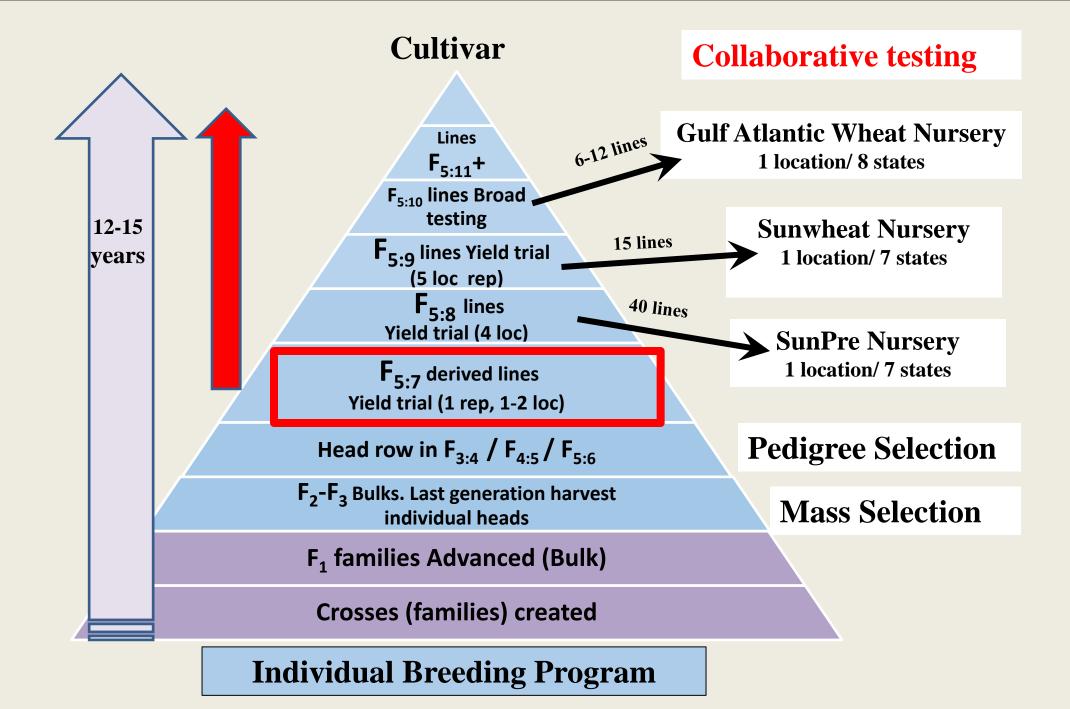
Received: 31 January 2018 / Accepted: 7 January 2019 / Published online: 24 January 2019 © The Author(s) 2019

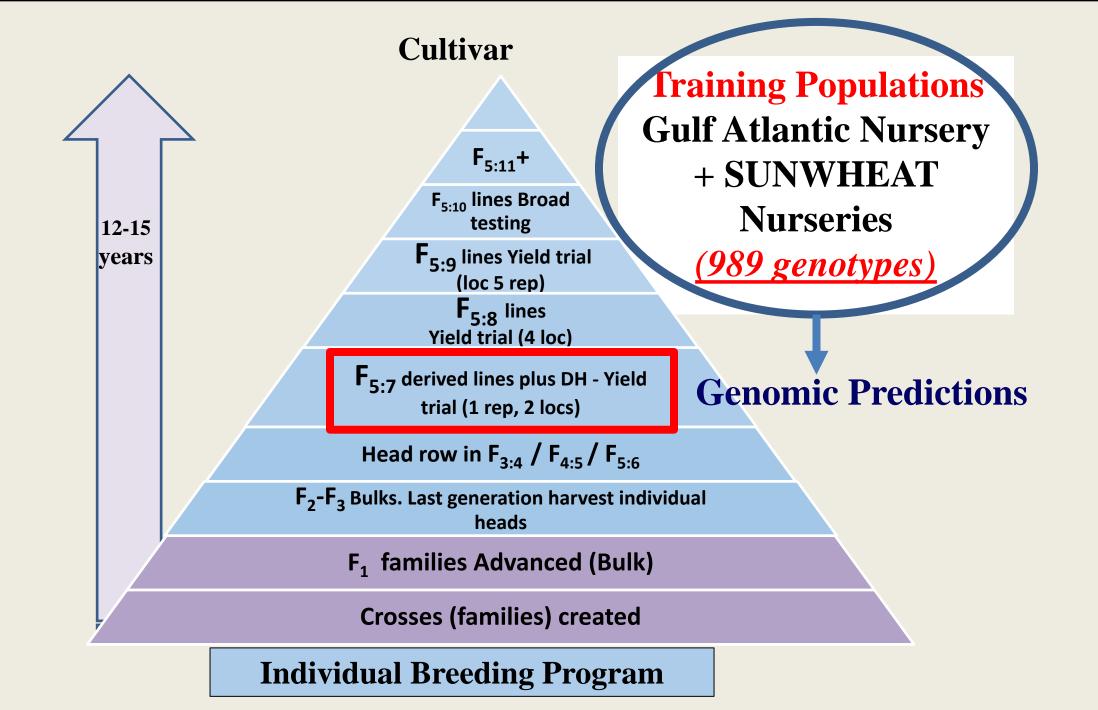
Evaluated predictive ability of an unbalanced data set of 467 winter wheat genotypes Grown in 49 environments from 2008 to 2016. (*Gulf-Atlantic Nursery*)

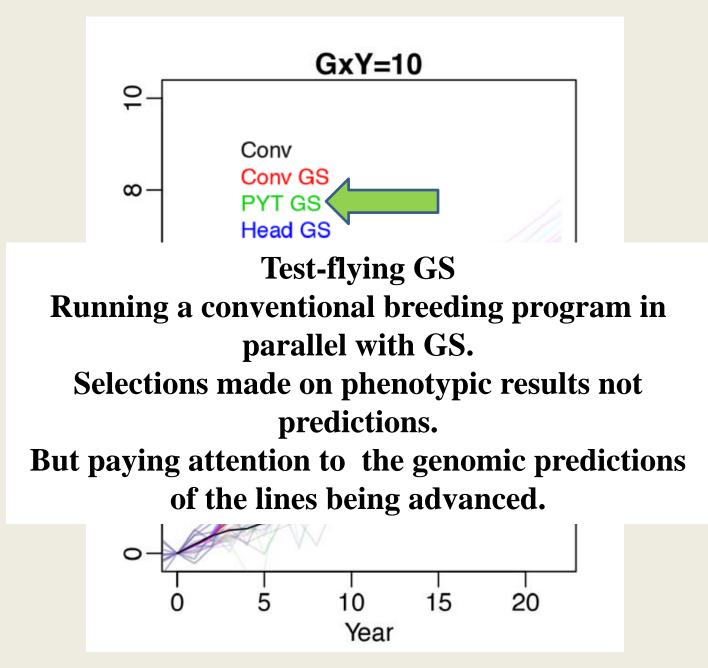
34,095 SNP from GBS

Maximum predictabilities were 0.64 for grain yield.

Lyerly, Brown-Guedira, Murphy





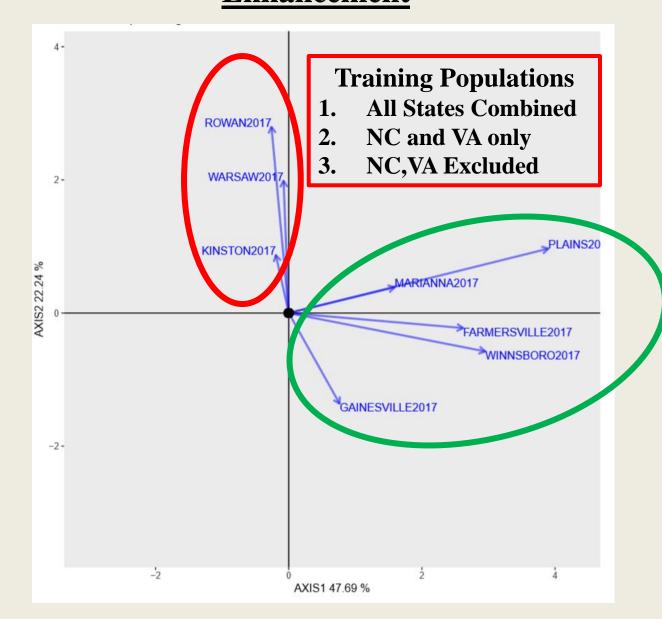


Gaynor et al. 2016 Crop Sci. 56: 2372-86

Timeline for SunGrains GS

Aug	Complete project plans; finalize number of samples per breeder; plant seeds
Sept-Oct	Collect tissue; send samples to Raleigh; begin DNA extractions
Nov-Dec	Prepare libraries for sequencing; submit all samples to the NCSU Genomic Sciences Lab; compile phenotype data
Jan-Feb	Biplots analysis; update training populations; receive sequence data; sequence data processing and QC
Mar-Apr	Generate first GEBVs for breeders; GWAS for covariates
May-June	Additional data analysis and testing; report further results to breeders
July-Aug	Receive field data; evaluate field data vs predictions (continuous as new data arrives); run PopVar and send results

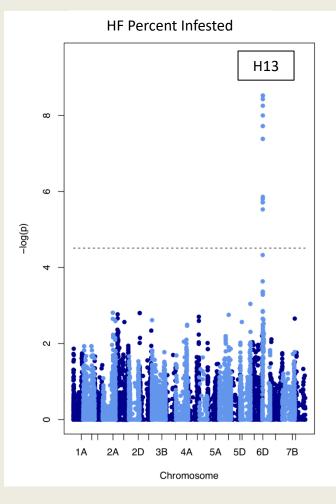
<u>GGE Biplot to Assist Training Population Development /</u> <u>Enhancement</u>



	Year 1: 2016-	Year 2: 2017-	Year 3: 2018-	Year 4: 2019-
	2017	2018	2019	2020
Regional Training Populations + FHB Training Population	3 Regional + 1 FHB	4 Regional + 1 FHB	5 Regional + 1 FHB	5 Regional + 1 FHB
Lines from the	623 from years	761 from years	862 from years	989 from years
GAWN + Sunwheat	2008-2016	2008-2017	2008-2018	2008-2019
Lines from the Uniform Southern Scab Nursery	285 from years 2011-2016	247 from years 2011-2017	292 from years 2011-2018	320 lines from 2011-2019

Training population optimization/modification testing

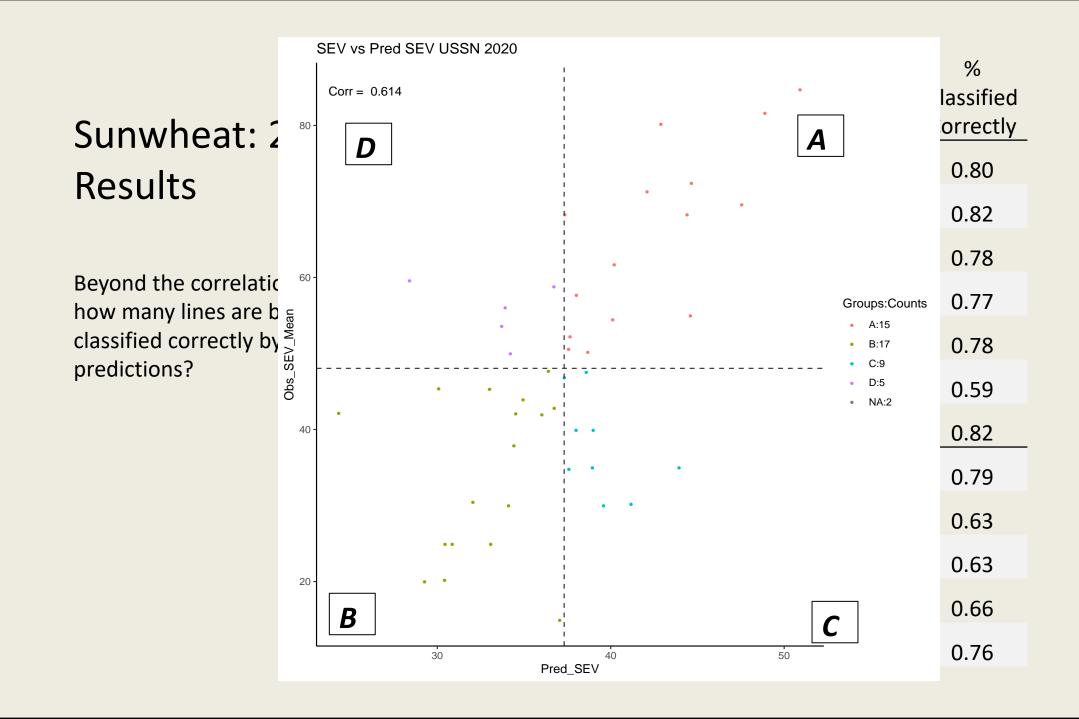
- Add additional regional training populations
- Use SNPs associated with major genes as covariates:
 - VrnA1, H13, Yr17, Lr18, etc.
- Adjust training population composition:
 - Use algorithm to select genotypes for training based on a list of genotypes you want to predict
- Adjust training population size:
 - Include 300, 350, 400, or 500 genotypes
- Add selections to training data:
 - Use NCVA as a test case
- Select SNPs via GWAS to use in prediction:
 - Significance thresholds 0.01, 0.05, 0.10. 0.15



Sunwheat: 2020 Correlation results for yield

Correlations between observed and predicted values for Sunwheat 2020 for yield for each regional training population

Trait: Yield **Training Population** Test Location Comb GA LATX NCVA noNCVA AR 0.24 0.33 0.34 -0.10 0.38 0.37 0.21 GA 0.32 0.17 0.32 NC -0.03 -0.18 -0.08 0.31 -0.11 LA -0.15 -0.18 -0.15 -0.03 -0.10 SC 0.36 0.29 0.36 0.16 0.39 TΧ 0.09 0.11 0.07 0.04 0.07 Mean over 0.29 0.29 0.25 0.15 0.32 Locs



NCSU Wheat Advanced Test WAT Entries 2021 Accuracies of Yield Predictions?

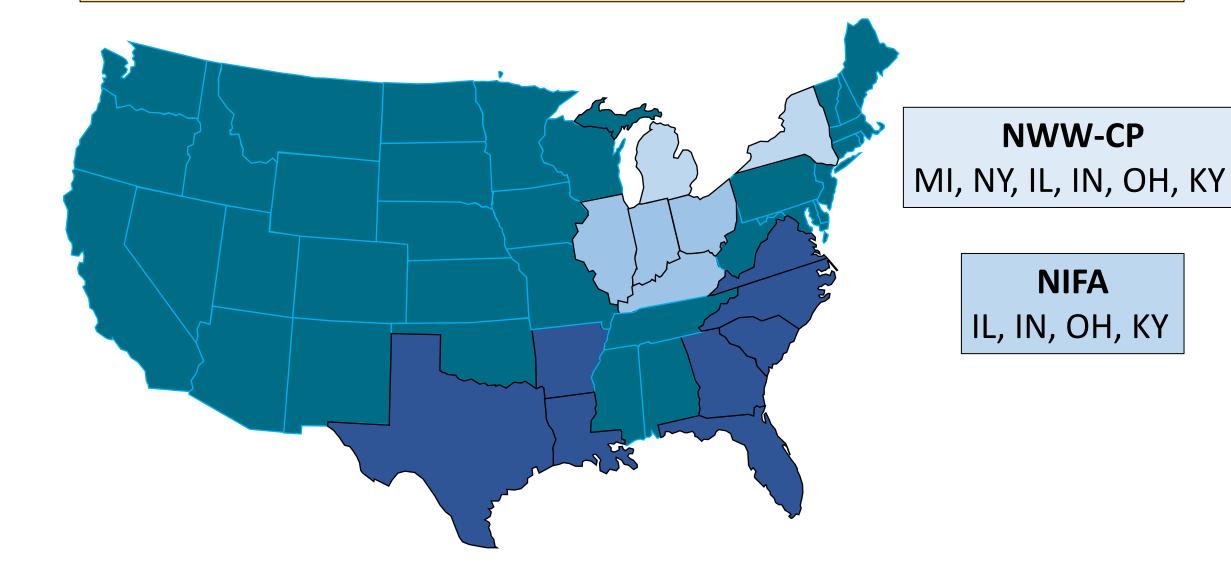
NC14-20369	NC18-17941
NC15-21834	NC18-17944
NC15-21835	NC18-17619
NC11546-14	NC13804-A113
NC16-19288	NC13804-A170
NC11363-25	NC13955-G8
NC16-21185	NC13955-G28
NC12642-81	NC13955-G84
NC12093-10	NC13955-G91
NC12164-97T	NC13955-G92
NC12164-200T	NC13955-G114
NC13211-9	NC13955-G125
NC13202-128	NC13955-G135
NC13207-16	NC13955-G151
NC13220-37	NC13955-G183
NC15V25-20	NC13955-G200
NC15V26-19	NC13810-M29
NC15V41-13	NC13906-W5
NC16-19349	NC13906-W10
NC13206-40	NC13906-W12
NC18-16900	NC13906-W39
NC18-16901	NC13217-W293
NC18-16913	NC13217-W2111
NC18-16920	NC13220-Z2163
NC18-17936	NCVT.D-33

C18-17941	50 Entries
<u>C18-17944</u>	
C18-17619	Equation program before CS (Clogr)
C13804-A113	Four in program before GS (<i>Clear</i>)
C13804-A170	
C13955-G8	Three were sequencing failures (<i>Blue</i>)
C13955-G28	
C13955-G84	
C13955-G91	
C13955-G92	Of the remaining 43:
C13955-G114	\mathcal{B}
C13955-G125	
C13955-G135	
C13955-G151	37 in top 50% of Yield Predictions (Yellov
C13955-G183	÷
C13955-G200	6 in bottom 50% of Yield Predictions (<i>Re</i>
C13810-M29	
C13906-W5	
C13906-W10	
C13906-W12	86 percent success rate.
C13906-W39	-
C13217-W293	

How do Sungrains breeders use GEBVs?

- Selection when phenotypic data is limited PYT (FHB, SR)
- Aid during in season field evaluation and note taking
- Eliminating low performing lines bottom 50%
- Selecting regionally and/or locally adapted lines
- Selection in sub-optimal environments
- Fast-track parents for crossing or designer crosses
- Selection for non-target traits

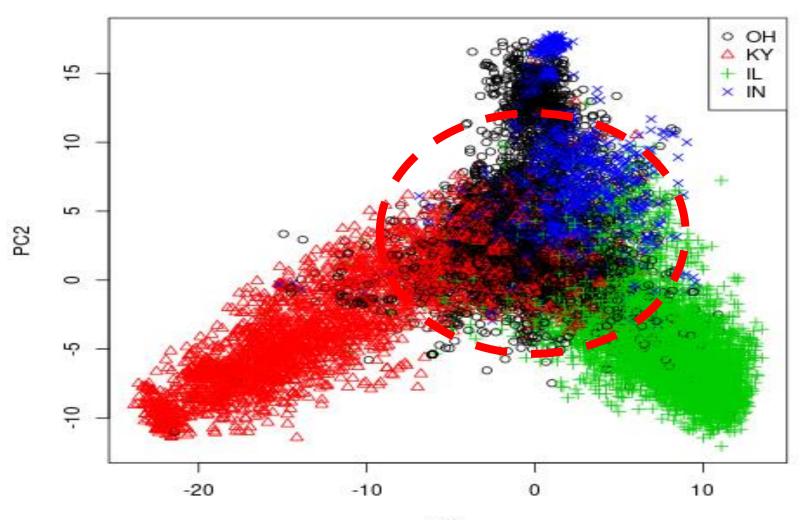
NWWCP & NIFA Consortiums



Requirements for Consortium Success

- 1. Germplasm among the member programs must be related
- 2.Germplasm from each member offers value to the other members
- 3. Development of optimal breeding and testing schemes

1. Relatedness of 10,246 Lines from IN, IL, KY, OH



PC1

2. Relevance of germplasm between states: Analysis of performance from 5-state trials, 2012-2018

Comparison	Testing	Origin of	Yield	GEI
Туре	Location	Lines	(bu/ac)	(bu/ac)
WITHIN	IL	IL	82.4	2.0
BETWEEN	IL	IN	82.2	1.4
BETWEEN	IL	KY	76.9	-1.3
BETWEEN	IL	OH	78.0	-4.1
WITHIN	IN	IN	86.8	-0.5
BETWEEN	IN	IL	92.8	5.3
BETWEEN	IN	KY	83.6	-1.4
BETWEEN	IN	OH	87.0	-1.9
WITHIN	KY	KY	73.3	1.6
BETWEEN	KY	IL	69.2	-3.7
BETWEEN	KY	IN	73.9	0.3
BETWEEN	KY	OH	76.7	1.8
WITHIN	ОН	OH	71.9	0.7
BETWEEN	ОН	IL	70.1	0.6
BETWEEN	ОН	IN	67.8	-1.9
BETWEEN	ОН	KY	68.4	1.0

Average GEI of local germplasm within a state = 0.7 bu/ac

Average GEI between states = -0.3 bu/ac

Average superiority of local germplasm within a state = 1.4 bu/ac

GS Accuracy

	Yield	Test Weight	FHB (Trait)
IN	0.44	0.33	0.40 (DON)
IL	0.45		0.58 (DON)
KY	0.51	0.63	
ОН	0.63	0.45	0.53 (Index)

Cross-validation accuracy within a program

		Predict Yield in this State					
		ОН	IN	IL	KY		
Source of	ON		-0.12	0.18	0.11		
Yield Data	IN	0.04		0.01	0.07		
used in TP	IL	0.10	-0.10		0.17		
	KY	0.08	0.01	0.15			

Accuracy between programs

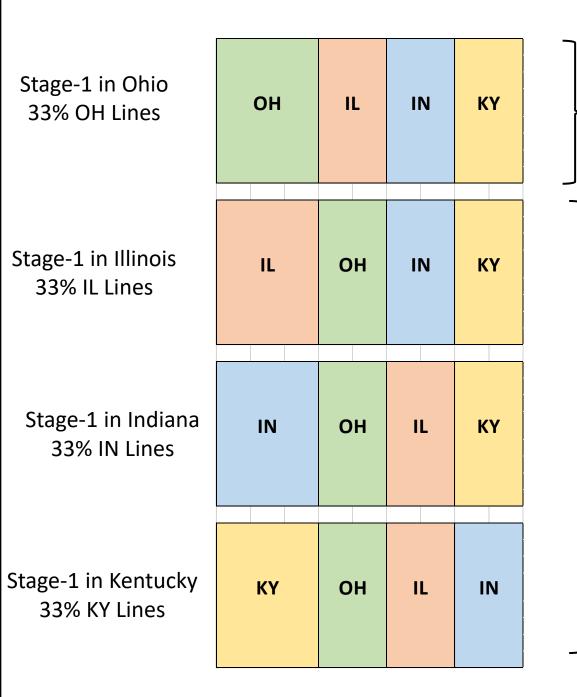
Within Ohio, Selection is based on: OH phenotypic data Ohio-based GEBVs		•	Testing S	Sche	emes		
	Stage-1 Stage-2 Stage-3 Stage-4 Total	erage # Lines r Program 950 240 35 15 1240	To	otal # Lines 3800 960 140 60 4960		95% of lines	Greatest Diversity
	Coopertive testing	11		45		< 1%, 0	Only "Elite"

3. Proposed Sparse Testing Schemes for Stage-1

Scenario 1				
	Current Testing of			
	Ohio Stage-1 Lines			
Test Location	OH Only			
Cross 1	9			
Cross 2	9			
Cross 3	9			
Cross 4	9			
Cross 5	9			
Total	45			

	Scenario 2						
	Spa	irse T	esting	g of			
	Ohi	o Stag	ge 1 Li	ines			
	OH	IL	IN	KY			
	3	2	2	2			
	3	2	2	2			
	3	2	2	2			
	3	2	2	2			
-	r	2	2	2			
	15	10	10	10			

Scenario 3				
Ohio Testing of				
Stage-1 Li	nes			
OH Lines 15				
IN Lines	10			
IL Lines	10			
KY Lines	10			
Total	45			



New Stage-1 Plan:

OSU selects among 900 OH-Tested lines using

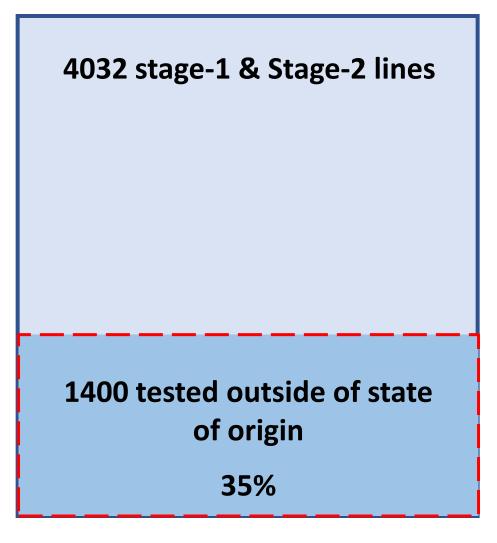
- 1) OH phenotypic data
- 2) Ohio-based GEBVs
- 3) GEBVs from 3 other environments & overall envs

OSU also selects among 2700 other lines using

- 1) Predicted value in OH
- 2) Observed values from their testing location
- 3) GEBV from each environment & overall envs

Each program can access 3600 stage-1 lines

2020-2021 Season: Stage-1&2 Testing of IL, IN, KY, OH Lines



Overall stages (1,2,3,4), 4,676 Lines

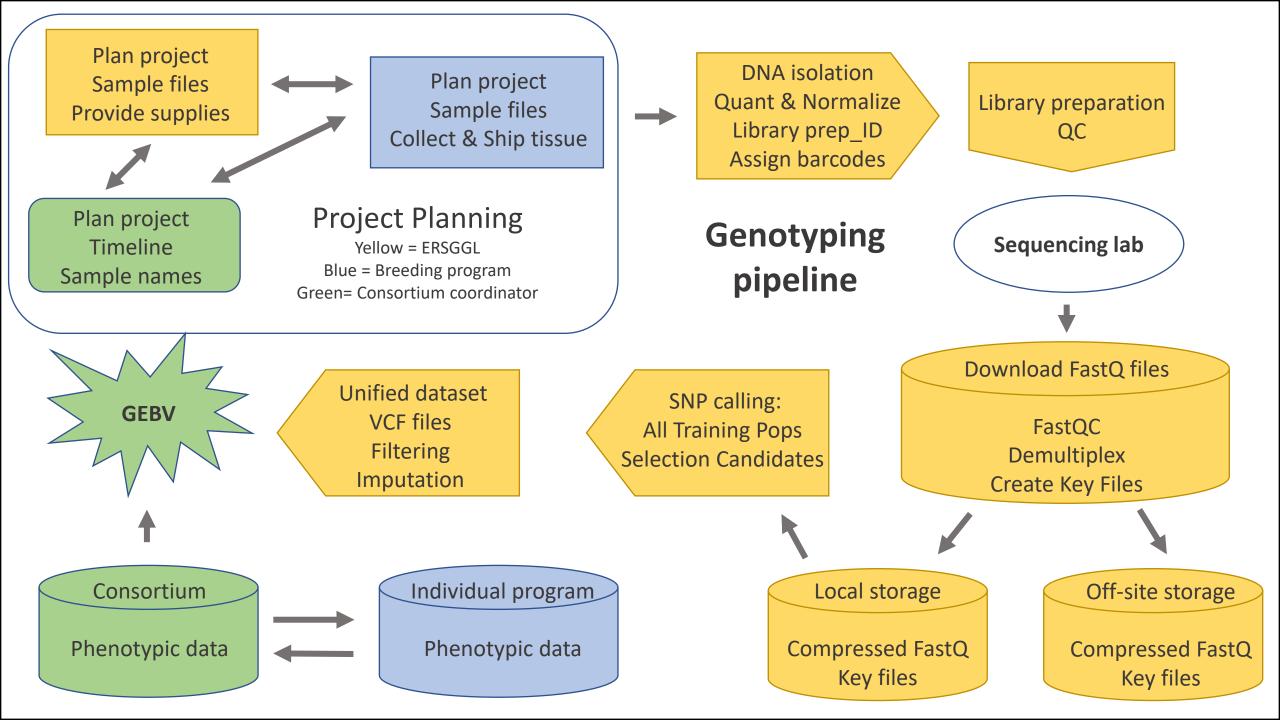
19.5% tested in multiple states

Brian Ward Coordinator USWBSI Northern GS

Benefits to Genotyping Lab of working with Consortiums

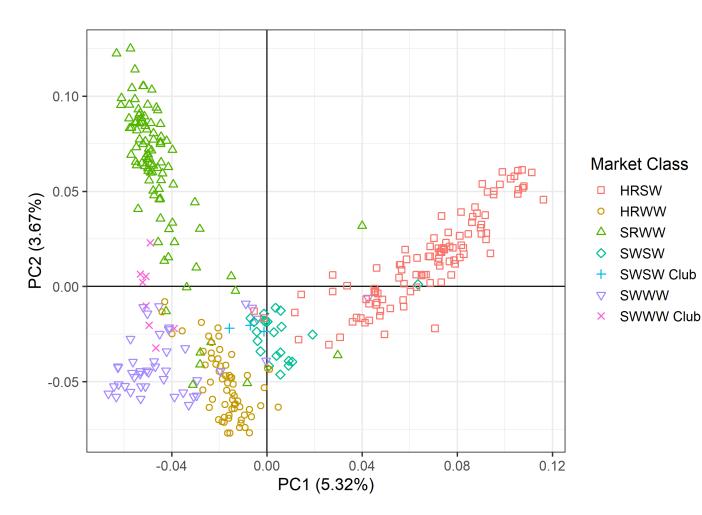
- Coordinator provides point person
- Consortium projects streamline workflow
- Large sample numbers can leverage better pricing
- Mine database of genotypic data and connected to phenotypes
- Collection of DNA samples

Jeanette Lyerly Coordinator SUNGrains GS



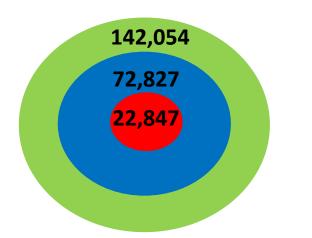
Development of targeted sequencing platform

- Research has shown that smaller numbers of SNP can be used for Genomic Selection
- Would like to have consistent data sets across germplasm
- Target genes, QTL regions and genome wide markers with a same technology
- Sufficient read depth to identify heterozygotes or copy number variants
- Simplify bioinformatics pipeline
- Empower labs to work independently



Diversity of North American Wheat based on Exome Capture of ~400 Cultivars Read depth > 6 Missing data < 0.25

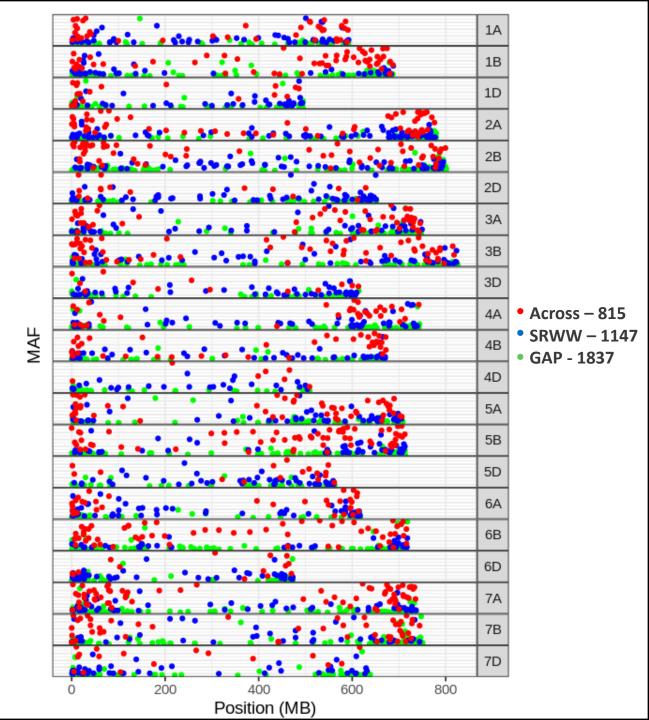
- MAF > 0.10 across regions
 MAF > 0.10 in SRWW
 - 3. MAF > 0.05 GAP



Weighted LD thinning, Across> SRWW > GAP

3800 genome wide SNP 67-305 per chromosome

175 trait associated targets Gene based, linked markers



Development of targeted sequencing platform

Data set can be used to select SNP for any targeted genotyping technology Data can be used to select SNP for different germplasm, breeding programs

Sticking point:

Process for development and design of a target technology is time and labor-intensive or expensive Tied to large number of samples for approach/design that may not be successful

Need flexibility of iterative design process:

Add new SNP associated with traits over time Replace monomorphic, failed or overabundant targets Update based on new information about biology

Allegro Targeted Genotyping – NuGen (Tecan) Single Primer Enrichment Technology No upfront cost of design process Not tied to large numbers of samples Disadvantage is cost (~\$13-15/sample)

U.S. Wheat & Barley Scab Initiative

