
Local Malting Barley for Northeast Craft Beverage Markets: What's FHB Got to Do with It?

Acknowledgements

Cornell Field Crops Pathology Lab members:

Jen Starr, Kevin Myers, Jaime Cummings, Alyssa Blachez, Michael Fulcher, Andrea Lugo-Torres

Cornell Malting Barley Extension Team:

Aaron Gabriel, Kevin Ganoe, John Hanchar, Christian Malsatzki, Justin O'Dea, Mike Stanyard, Cheryl Thayer, Bill Verbeten Cornell collaborators: Mark Sorrells,
David Benscher, Amy Fox, Daniel
Sweeney, Karl Kunze,
Paul Stachowski

Extramural collaborators:

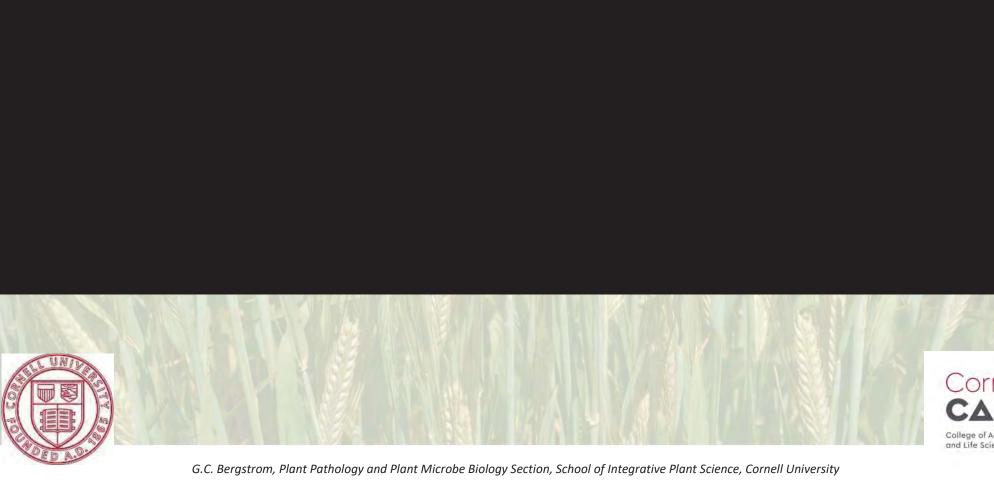
Yanhong Dong, Paul Schwarz, Aaron MacLeod, Pierce Paul, Christina Cowger, Hannah Turner, Heather Darby, Andrew Friskop

The malting barley growers of New York State - Thanks!

With financial support from:
New York State Dept. of Agriculture and Markets
Genesee Valley Regional Market Authority

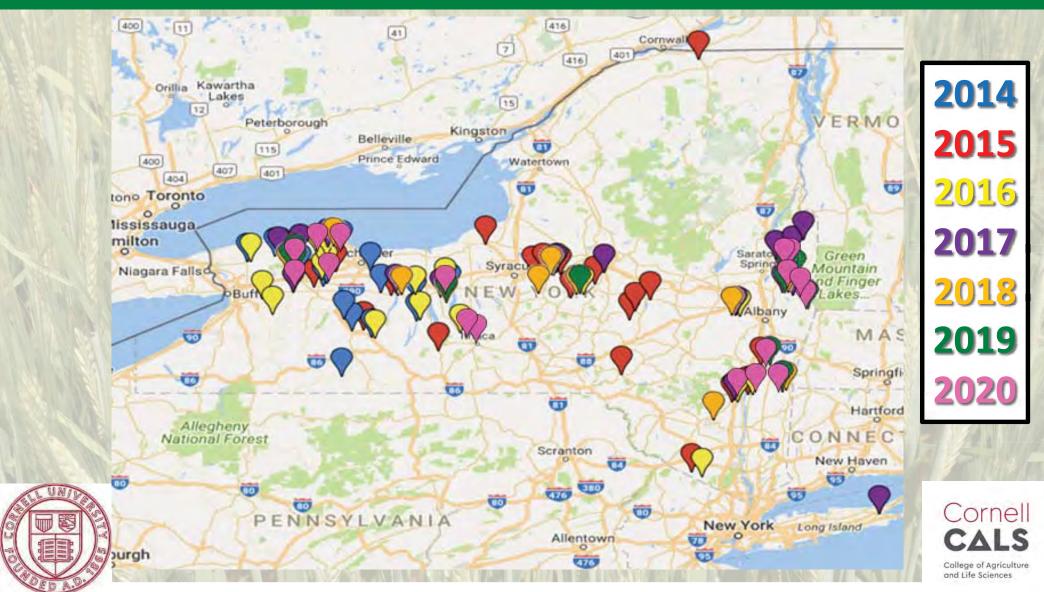
USDA-NIFA Cornell Hatch Project

USDA-ARS US Wheat and Barley Scab Research Initiative



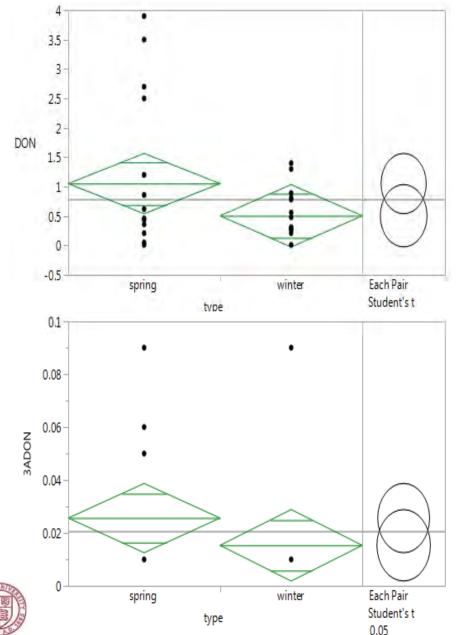
Outline

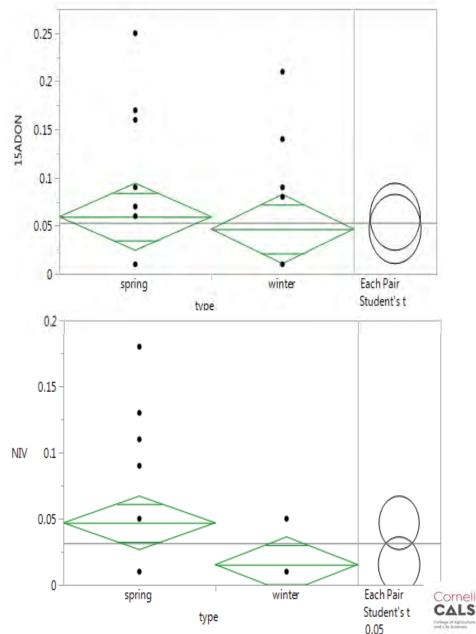
- Rebirth of a crop and creation of a value chain since 2012
- Progress toward consistent grain quality
- Fusarium head blight and DON toxin
 - barley enemy # 1
- Grain fungal flora and mycotoxin profiles
- Other diseases affecting yield and/or grain quality
- Integrated management of diseases and mycotoxins
 - Good agronomy, harvest, drying, cleaning
 - Varieties and breeding
 - Fungicides
 - Storage management



Surveys for grain quality in NYS commercial barley fields

Commercial barley field surveys


	% of Barley Grain Lots Making Malt Grade for:							
Year	DON < 1 ppm	Germ > 95 (72 hr)	Protein (9-12%)					
2014	59	NA	55					
2015	38	52	40					
2016	100	51	92					
2017	77	81	77					
2018	96	50	75					
2019	94	71	82					



Mycotoxins in 2017 barley grain

All 31 samples, all 13 varieties (16 spring & 15 winter)

Fusarium Head Blight is Malt Barley Enemy # 1 Two row barley Six row barley Cornell © G.C. Bergstrom G.C. Bergstrom

Why is DON important in malting barley?

DON in beer

Safety concern Public perception

Beer Gushing

Caused by hydrophobins produced by *Fusarium*, as well as other fungal species

Distilling

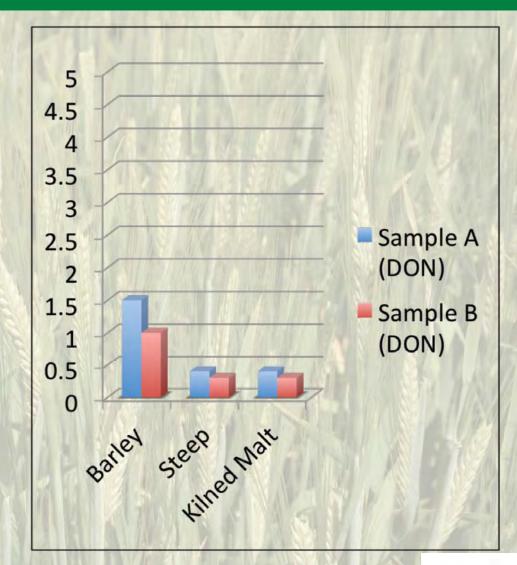
DON is not transferred to distillate but will remain with the spent mash

CORNELLS
College of Agriculture and Life Sciences

Courtesy of Paul Schwarz, NDSU

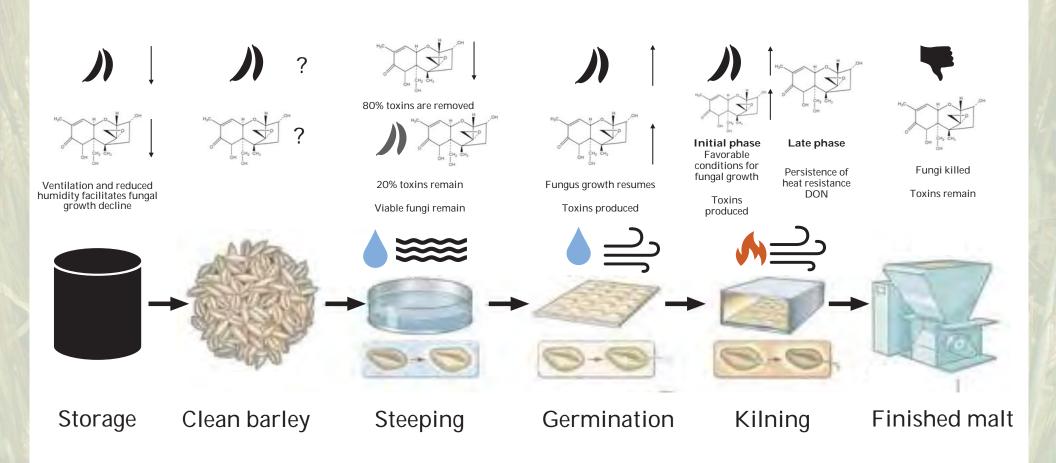
DON in malting

Courtesy of Paul Schwarz, NDSU



Viable *Fusarium* in kernels may produce more DON during malting

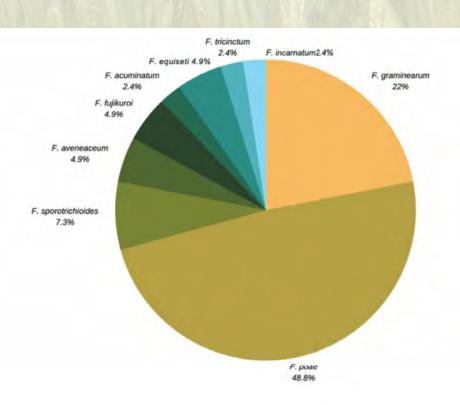
DON in malting

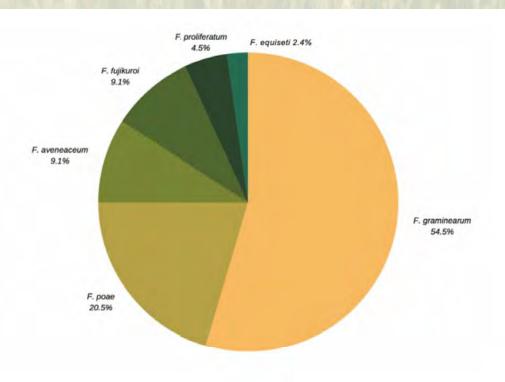

- The normal pattern is
 to see <u>DON decrease in</u>
 the steep, and remain
 low on the finished
 malt.
- DON levels in more heavily infected samples generally will not be reduced to satisfactory levels by steeping.

Courtesy of Paul Schwarz, NDSU

Fate of Fusaria and toxins through malting

Fusarium= Type B trichothecenes/deoxynivalenol & acetylated DON (DON)(3ADON-15ADON)(NIV)=





Lugo-Torres, Andrea. M.S. Thesis, Cornell University, August 2020.

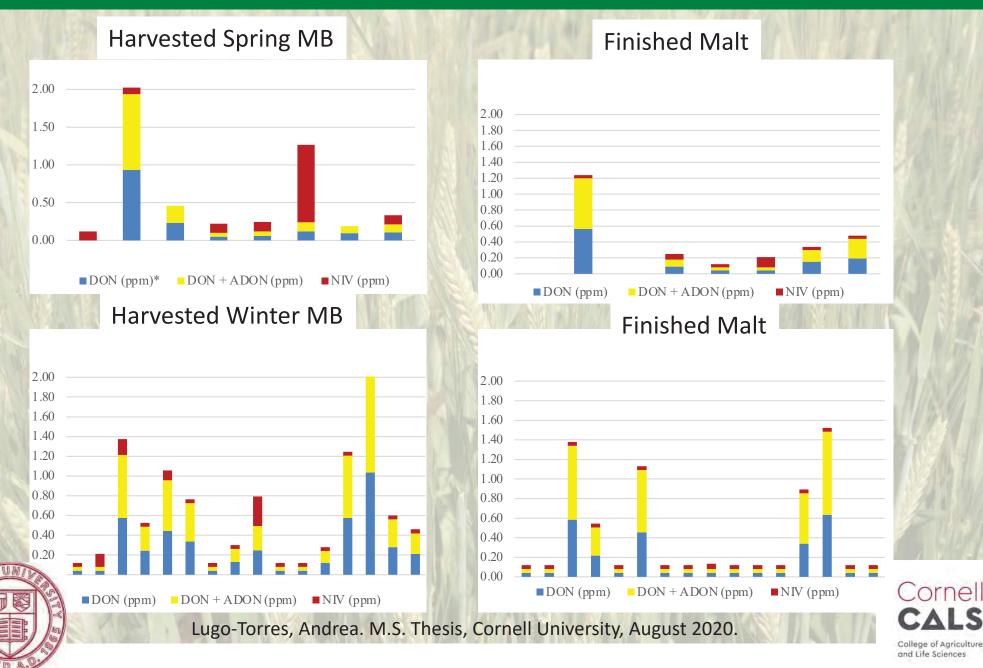
Fusarium graminearum and Fusarium poae predominated in barley grain in 2018

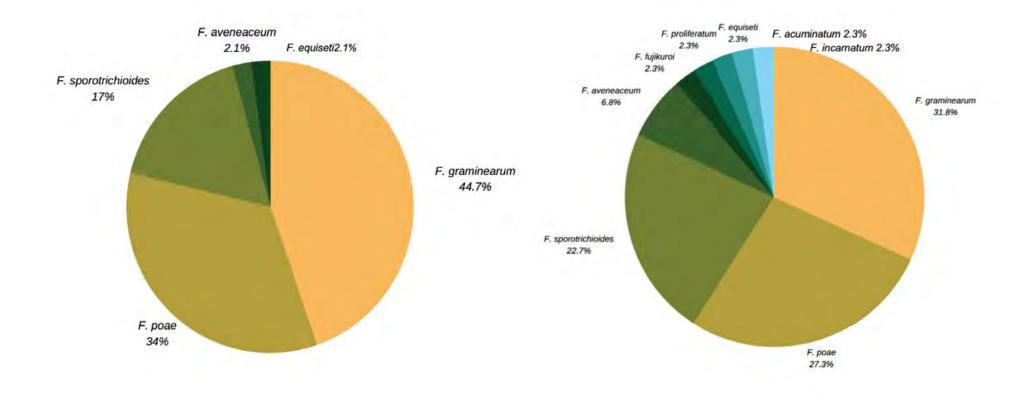
Spring MB

Winter MB

Lugo-Torres, Andrea. M.S. Thesis, Cornell University, May 2020.

Mycotoxins produced by Fusaria infecting barley grain

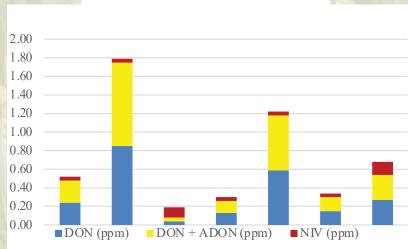

Fusarium spp.	Fumonisins	Moniliformin	Deoxynivalenol (DON)	3- & 15- ADON	Nivalenol	HT-2	T-2	Zearalenone
F. acuminatum (FTSC)		x				X	х	
F. aveneaceum (FTSC)		х						
F. equiseti (FEISC)		х			х		x	х
F. fujikuroi (FFSC)	х	х						
F. graminearum (FGSC)			х	х	х			х
F. poae					х	X	х	
F. proliferatum (FFSC)	х	x						
F. sporotrichioides		X				х	х	
F. tricinctum (FTSC)		x						
Fusarium incarnatum (FEISC)	x							х


Lugo-Torres, Andrea. Assessment of Mycoflora, Mycotoxin Profiles and Fungal Diseases of New York Grown Barley to Assure High Quality Malt for Craft Brewing. M.S. Thesis, Cornell University, August 2020.

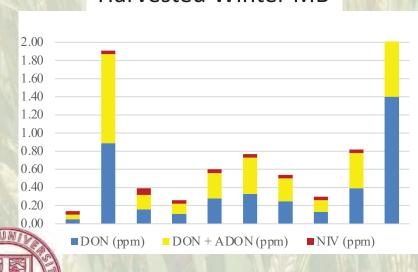
Mycotoxins in harvested grain vs. finished malts in 2018

Fusarium graminearum, F. poae, and F. sporotrichioides predominated in barley grain in 2019

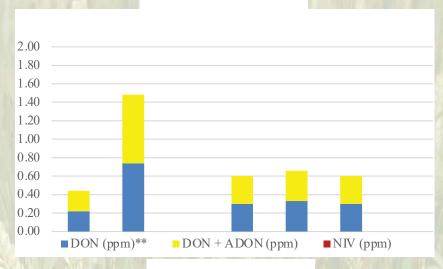
Spring MB

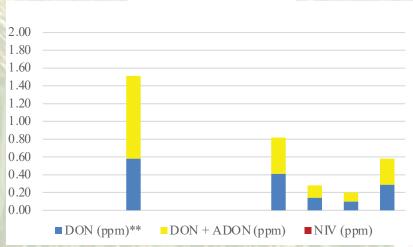

Winter MB

Lugo-Torres, Andrea. M.S. Thesis, Cornell University, August 2020.



Mycotoxins in harvested grain vs. finished malts in 2019

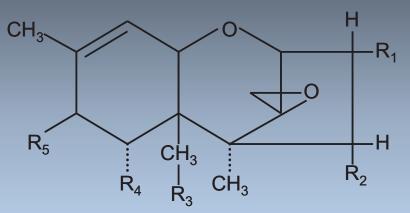



Harvested Winter MB

Finished Malt

Finished Malt

Lugo-Torres, Andrea. M.S. Thesis, Cornell University, August 2020.


Predicted chemotypes of *Fusarium graminearum* isolates in 2018-2019 based on TRI12

	15 ADON	3 ADON	NIV		
2018	23	2	0		
2019	19	9	2		

Relative toxicity of deoxynivalenol (DON) and related beta-trichothecene toxins

1 mg toxin/kg of body weight = 1 ppm = 1,000 ppb

	NOT LEAD BEING	mg/kg	mg/kg
Deoxynivalenol	DON	46	43
3-Acetyldeoxynivalenol	3-ADON	34	47
15-Acetyldeoxynivalenol	15-ADON	34	113
Nivalenol	NIV	5	4

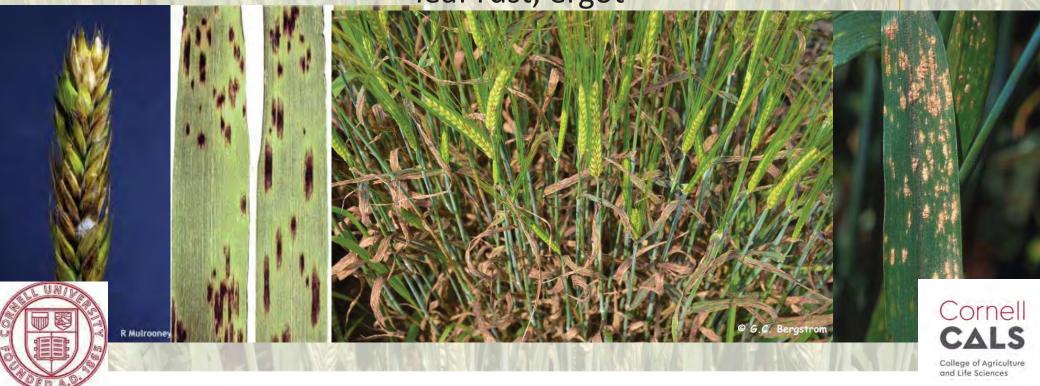
Source: Sigma-Aldrich Material Safety Data Sheets

Results of 2018-19 Lugo-Torres Study

- Commercial barley grain lots had lower average DON levels, but higher NIV in the very dry year than in the more normal year
- All but two commercial barley grain lots maintained individual mycotoxins below 1 ppm, yet the total trichothecene load exceeded 1 ppm in some lots
- No finished malts had individual mycotoxins above 1 ppm, but some exceeded 1 ppm in total trichothecenes
- Fusarium poae DNA content in grain was correlated with NIV in grain lots in 2018, indicating that F. poae was the primary source of NIV
- Fusarium graminearum DNA content in grain was correlated with DON in finished malts in both years

Take-aways from 2018-19 Lugo-Torres Study

- An unrealized risk of NIV contamination in barley for malting that may be magnified under conditions favoring contamination of grain by *F. poae*.
- Though the incidences of *F. sporotrichioides* and *F. acuminatum* were fairly low, their presence, which may be elevated in other years, bears scrutiny as these molds produce the very serious mycotoxins T-2 and HT-2
- Finding of low levels of fumonisin- and moniliformin-producing Fusarium spp. in barley also justify future surveillance for these molds and mycotoxins in barley



Diseases occurring in NYS

15 Barley Diseases Diagnosed in NYS since 2014

Barley yellow dwarf, halo spot, loose smut, bacterial blight, Fusarium root rot, net blotch, snow mold, <u>scald</u>, <u>spot blotch</u>, anthracnose, powdery mildew, <u>Fusarium head blight</u>, Rhizoctonia root rot, leaf rust, ergot

Foliar diseases

Ergot

Issue in barley following grass hay or fallow

Loose smut

Serious issue in organic barley production

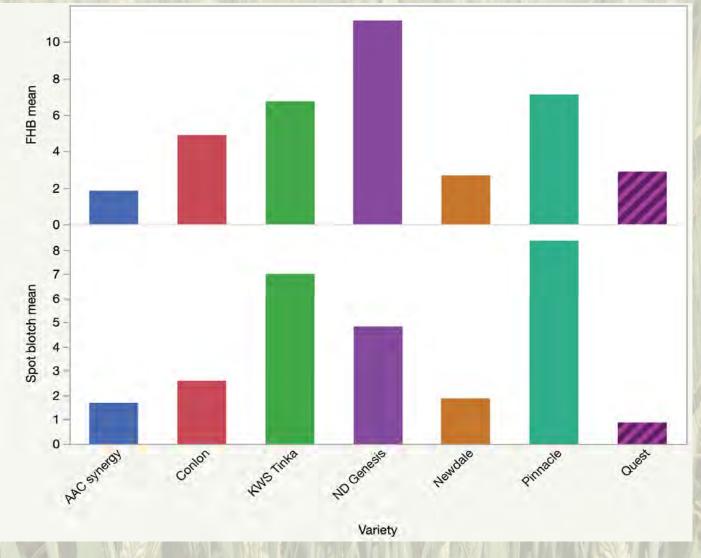
2017 Spring Malting Barley Integrated Management Trial

	Leaf	Leaf		FHB		Test	
Cultivar mean	Rust	Blotch	Scald	Index	DON	Weight	Yield
ND Genesis	0.1	5.1 a	2.9	5.0 a	3.2 b	44.1 a	68.2
Newdale	0.1	3.0 ab	1.5	0.9 b	3.0 b	42.1 b	69.2
AAC Synergy	0.0	2.3 b	1.2	0.7 b	3.9 b	42.6 b	63.3
KWS Tinka	0.1	4.2 ab	2.4	0.7 b	7.4 a	42.9 b	60.4
HSD (P=0.05)	NS	2.66	NS	0.95	1.72	1.04	NS
CV (%)	206.7	102.6	127.1	128.9	65.5	3.7	21.6

Jaime Cummings, Paul Stachowski, and Gary Bergstrom

2018 Winter Malting Barley Integrated Management Trial

Cultivar mean	Spot Blotch	Scald	DON	Test Weight	Yield
LCS Calypso	0.5 b	0.3 b	0.1 a	46.4 ab	82.6 b
AC Flavia	3.2 a	43.0 a	0.0 a	48.9 a	81.1 b
KWS Scala	3.4 a	40.5 a	0.1 a	43.9 b	72.5 b
KWS Somerset	0.4 b	1.6 b	0.1 a	45.3 b	96.9 a
HSD (P=0.05)	1.37	15.7	NS	2.72	12.02
CV (%)	100.5	118.9	96.8	6.6	16.6


Jen Starr, Jaime Cummings, Paul Stachowski, and Gary Bergstrom

FHB Incidence and Spot Blotch Severity in Spring Barley Regional Trials

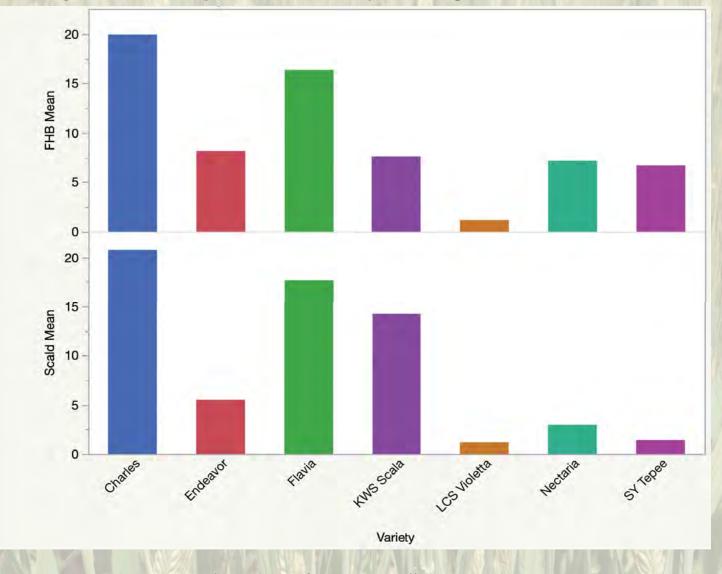
Multiple linear regression model for (year x location x variety) on the response of spot blotch incidence (%) and FHB incidence (%)

CALS

College of Agriculture and Life Sciences

Spring Barley Disease Reactions

		Spot		Powdery	Fusarium
Varieties (Rows	Blotch	Leaf Rust	Mildew	Head Blight
AAC					
Synergy	2	R	MS	MR	MS-MR
Cerveza	2	MR	MR	MR	MS-MR
Conlon	2	MS-MR	MS	R	MR (MS*)
Craft	2	MR	MS-MR	MS	MS-MR
KWS Tinka	2	S	MR	R	MS
ND Genesis	2	MS	MR	R	MR
Newdale	2	MR	MR	R	MR
Pinnacle	2	S	MR	R	MS (S*)
Quest	6	R	MS	S	MR (MS*)



*(S, MS) rating by Andrew Friskop, NDSU

FHB Incidence and Scald Severity in Winter Barley Regional Trials

Multiple linear regression model for (year x location x variety) on the response of scald incidence (%) and FHB incidence (%)

Lugo-Torres, Andrea. M.S. Thesis, Cornell University, May 2020.

Winter Barley Disease Reactions

			Leaf	Powdery	Fusarium Head
Variety	Rows	Scald	Rust	Mildew	Blight
Charles (Ck)	2	S	S	R	MS-MR
LCS Calypso	2	R	NA	R	MR
Endeavor	2	MR-R	R	MR-R	MR
Flavia	2	S	R	R	S-MS
KWS Scala	2	S	R	MR-R	MS-MR
KWS	- 6				
Somerset	2	R	NA	R	MS
Nectaria	2	R	R	S	MS
SY Tepee	2	R	R	R	MS
LCS Violetta	2	R	NA	R	MS-MR

Born, Bred, and Brewed in New York Breeding Project

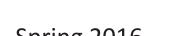
Cornell University barley FHB resistance breeding efforts

- Two-row spring malting barley breeding initiated in 2016, two-row winter in 2018
- Additional breeding of winter naked multiuse barley
- Winter breeding lines have not yet been evaluated for FHB
- Recent new spring crosses for FHB resistance

See BAR-CP Poster:

and Mark Sorrells

Five Years in: Outlook for Breeding for FHB Resistance in Barley in New York. Daniel Sweeney, James Tanaka, David Benscher,



Excellence in Plant Breeding Since 1907

Born, Bred, and Brewed in New York Breeding Project

Two-row spring malting program has progressed rapidly CU-31 will be named on Dec 16, 2020

First crosses

1340 lines,2 locations

2018

100 lines, 5 locations

2019

60 lines, 5 locations

2020

Foundation seed increase

Courtesy of Mark Sorrells and Daniel Sweeney

Best fungicidal suppression of FHB and DON in barley

Fungicides:

metconazole (8.6%)

FRAC Group 3 - DMI

prothioconazole (19%) & tebuconazole (19%)

FRAC Group 3 - DMI

pydiflumetofen (13.7%) & propiconazolee (11.4%)

FRAC Groups 3 & 7 – DMI &SDHI

Timing:

Best: Majority of primary tillers with heads completely emerged from boot (Feekes GS 10.5).

Good: Next 5-7 days after full head emergence

2017 Spring Malting Barley Integrated Management Trial

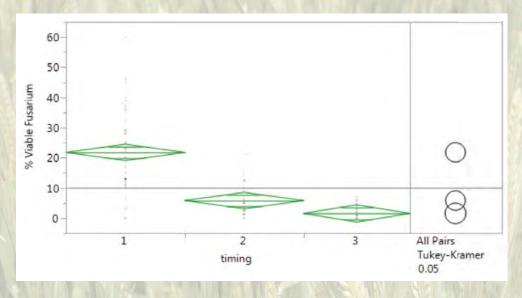
	Leaf	Leaf		FHB		Test	
Treatment mean	Rust	Blotch	Scald	Index	DON	Weight	Yield
Non-sprayed	0.3 a	7.5 a	4.0 a	2.9 a	6.8 a	42.1 c	64.3
Prosaro FGS 10.5	0.1 b	2.5 b	1.7 b	1.4 ab	4.3 b	43.2 ab	66.8
Caramba FGS 10.5	0.0 b	2.7 b	1.4 b	1.7 ab	4.2 b	42.6 bc	64.0
Prosaro FGS 10.5, followed by							
Caramba 7 days later	0.0 b	1.9 b	0.8 b	1.2 b	1.9 c	43.7 a	65.7
HSD (P=0.05)	0.13	2.14	1.66	1.68	1.71	1.10	NS
CV (%)	206.7	102.6	127.1	128.9	65.1	3.7	21.6

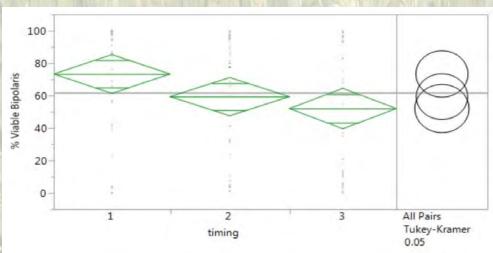
Jaime Cummings, Paul Stachowski, and Gary Bergstrom

2018 Spring Malting Barley Fungicide and Organic Treatment Trial at Alburgh, VT

Data courtesy of Heather Darby and Erica Cummings, University of Vermont

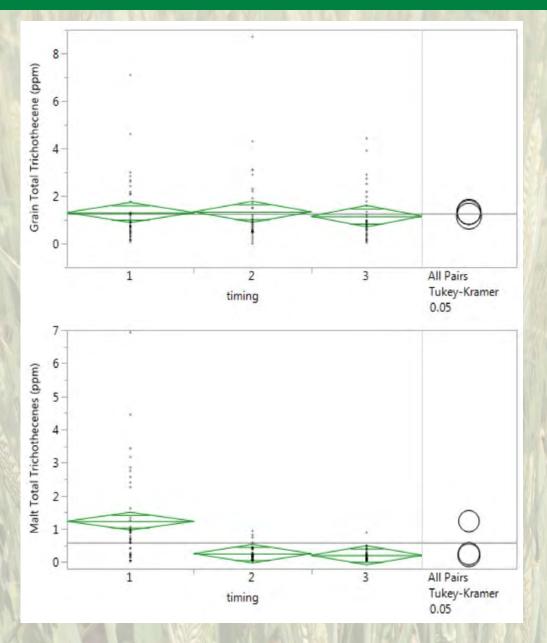
Spray at full head emergence:	DON
non-sprayed	7.91
Caramba	4.80
Prosaro	3.68
ChampION (copper hydroxide)	5.74
Actinovate (Streptomyces)	7.69
Sonata (Bacillus)	7.14


Seldom see significant reduction of DON with OMRI materials!


See Forum Proceedings Paper by Heather Darby and Hillary Emick, summarizing 3 years of tests including organic copper

Fusarium viability reduced with time in storage

Viable Fusarium in barley grain is significantly reduced over time



Viable *Bipolaris* in barley grain is not significantly affected

DON concentration not reduced with time in storage

Trichothecene mycotoxins remain constant over time in grain

Trichothecene
mycotoxins are
significantly
reduced in malt if
grain is stored

Integrated management of diseases and mycotoxins

- Plant barley following soybean or vegetable crop; not after corn, small grain, hay or fallow with grasses
- Choose variety based on malt quality potential, adaptation, and disease resistance
- Sow fungicide-treated, certified seed
- Apply Caramba, Prosaro, or Miravis Ace fungicide at full head emergence or up to 7 days later
- Additional fungicide application (mixed mode of action best)
 prior to flag leaf emergence if warranted by early season foliar
 diseases or susceptibility of variety

Virtual Empire State Barley and Malt Summit December 16, 2020

