Novel sources of Fusarium head blight resistance derived from wild wheat relatives

2020 Fusarium Head Blight Forum December 7–11, 2020

Bernd Friebe, Dal-Hoe Koo, Bikram S. Gill Wheat Genetics Resource Center Department of Plant Pathology

- Limited FHB resistance present in the primary and secondary gene pool of wheat
- To date, only 7 FHB resistance genes have been named and 3 were derived from the tertiary gene pool
- Fhb3 derived from Leymus racemousus (2n=4x=28) [Qi et al. 2008]
- Fhb6 derived from Elymus tsukushiensis (2n=6x=42) [Cainong et al. 2015]
- Fhb7 derived from Thinopyrum elongatum (2n=10x=70) [Dr. Kong's group: Guo et al. 2015, Wang et al. 2020]

Fhb3 derived from Leymus racemosus

Fhb6 derived from Elymus tsukushiensis

KS14WGRC61

T1AL·1AS-1E^{ts}#1S

Cainong et al. (2015) Theor Appl Genet 128: 1019-1027

Greenhouse evaluation of Fhb6 derivatives after point inoculation

Pedigree	Chromosome constitution	Genetic background	Average FHB rating (%)	Heads inoculated
Everest	Euploid (2n=42)	Everest	27.7	40
TA9107	Euploid (2n=42)	Overley	54.6	40
TA3008	Euploid (2n=42)	Chinese Spring	35.1	42
TA7684-2	DA1E ^{ts} #1	Chinese Spring	12.5	41
2011-56-3	Hom T1AL·1AS-1E ^{ts} #1S	Chinese Spring	4.2	40
2011-56-10	Hom T1AL·1AS-1E ^{ts} #1S	Chinese Spring	13.3	42
2011-56-13	Hom T1AL·1AS-1E ^{ts} #1S	Chinese Spring	8.9	51
2011-60-5-1	Hom T1AL·1AS-1E ^{ts} #1S	Chinese Spring	8.6	40
2011-56-4	No E. tsukushiensis chromatin	Chinese Spring	31.7	40
2011-60-5-2	No E. tsukushiensis chromatin	Chinese Spring	42.5	39

Field evaluation of BC₁F₆ *Fhb6* introgressions into Lyman and Overland backgrounds

Line	2020 ID	2019 ID	FHB Incidence	Heading	Height	1000 tkw	DON
and the second second second			2020 2019	2020 2019	2020	2020	2019
Lyman	RF20FH0011, B4	RF19FH0041, B14	80 80	5/20 5/30	101	23.4	12.7
Overland	RF20FH0034, A12	RF19FH0013, A5	80 80	5/21 5/30	91	19.6	22.7
Lyman/Fhb6	RF20Fh0010, A4	RF19FH0032, B11	80 60	5/17 5/26	114	23.9	11.7
Overland/Fhb6	RF20FH0006, C2	RF19FH0014, B5	50 40	5/21 5/31	104	26.3	not
	×**			N 12			tested
Overland/Fhb6	RF20FH0009, C3	RF19FH0014, B5	60 40	5/18 5/31	108	24.8	not
							tested
Overland/Fhb6	RF20FH0033, C11	RF19FH0014, B5	60 40	5/21 5/31	98	24.1	not
							tested
Overland/Fhb6	RF20FH0004, A2	RF19FH0010, A4	60 50	5/16 5/29	114	28.3	10.2
Overland/Fhb6	RF20FH0035, B12	RF19FH0011, B4	70 30	5/19 5/29	109	26.3	12.6

Seed characteristics of *Fhb6* Lyman introgressions

Lyman/Fhb6 RF19FH0032 Don: 11.7

Lyman

2018/19 growing season

2019/20 growing season

2018-19 and 2019-20 | Rocky Ford Scab Nursery | Manhattan KS

KANSAS STATE UNIVERSITY

Seed characteristics of *Fhb6* Overland introgressions

Overland/Fhb6 RF19FH0010 DON: 10.2

Overland DON: 22.7

Overland/Fhb6 RF19FH0011 DON: 12.6

2018-19 | Rocky Ford Scab Nursery | Manhattan KS

KANSAS STATE

Seed characteristics of Fhb6 Overland introgressions

2019/20 growing season Overland

Overland/Fhb6

Overland/Fhb6

Overland/Fhb6

2019-20 | Rocky Ford Scab Nursery | Manhattan KS

KANSAS STATE

Novel source of FHB resistance

- HSD2-32 produced at Harbin Normal University by Yanming Zhang
- F7 derivative of Ganmei8

Trielytrigia, 2n=56, AABBDDEE

Х

Th. intermedium, 2n=42, JJJ^sJ^sSS

HSD2-32 has 2n=42 chromosomes but its genome constitution remains unknown

Point inoculation of HSD2-32

GAA FISH [green] and *Th. intermedium* GISH [red] of HSD2-32

GAA FISH [green] and Th. elongatum GISH [red] of HSD2-32

Future work

- Continue to backcross HSD2-32 into adapted winter wheat cultivars
- Evaluate backcross progenies under greenhouse and field conditions for FHB resistance and DON accumulation
- Use molecular marker analysis to determine source of FHB resistance
- Initiate directed chromosome engineering to produce agronomically useful introgression lines

Acknowledgements

Joey Cainong Bill Bockus Mark Davis Jessica Rupp Myron Bruce Duane Wilson Kansas State University

MCKNIGHT FOUNDATION

Dajun Liu Peidu Chen Nanjing Agricultural University

North Dakota Minnesota DON Testing Labs

KANSAS STATE

