

Sampling and sample preparation for testing cereals for deoxynivalenol (DON)

Sheryl A. Tittlemier Grain Research Laboratory, Canadian Grain Commission Winnipeg, Manitoba, Canada

Acknowledgements

- Characterizing sources of variability in DON testing:
 - J. Chan, D. Gaba, K. Pleskach
 - Grain Research Laboratory, Canadian Grain Commission
 - J. Osborne
 - Department of Statistics, North Carolina State University
 - A.B. Slate and T.B. Whitaker
 - Biological and Agricultural Engineering Department, North Carolina State University
- Effects of sample processing on variability in testing:
 - R. Blagden, J. Chan, T.L. McMillan, K. Pleskach, M.S. Izydorczyk
 - Grain Research Laboratory, Canadian Grain Commission

Challenges in measuring bulk material

Challenges measuring bulk wheat for DON

- A number of studies have demonstrated variability of DON in bulk wheat:
 - DON in truckloads and storage: 3-125% CV
 - (Hart and Schabenberger, 1998; Biselli et al., 2008; Mallmann et al., 2018)
- As well as variability within a wheat field:
 - <0.02 1.0 mg/kg</p>
 - <0.001 0.88 mg/kg</p>
- And amongst kernels:
 - <LOD 600 mg/kg</p>

(Sinha and Savard, 1997)

(Oerke et al., 2010)

(Xu et al., 2008)

Identifying sources of variability in DON analysis

Experimental design

Contributions to total variance

Main contributors to DON test results variance

- 2019 vs 2000
 - total variance ~10x less
 - Initial sampling step contributed the most to total variance

How can DON test results variance be reduced?

For DON at 1 mg/kg in wheat

	2000 study	2019 study
Lab sample	0.454 kg	1 kg
Test portion	25 g	100 g
Grinder	Burr mill	Rotor beater
Test method	ELISA	GC-MS

- increase sample size
- decrease particle sizes
- increase precision of test method

Maximize sample representativeness

- Take increments to prepare composite samples
- Use proper tools and procedures when sampling and dividing
- Optimize sample size

Canadian Grain Commission - Guide to Taking a Representative Sample

Grind well to reduce distributional heterogeneity

Maintain sample representativeness

- Use proper tools and procedures when mixing and dividing whole grain
- Shaking or hand mixing is not a good procedure!

Properly mixed

Shaken

https://www.grainscanada.gc.ca/en/grain-quality/sampling-grain/guide-taking-representative-sample/05-reducing-composite-sample.html

Maintain sample representativeness

- Use proper tools and procedures when mixing and dividing ground grain
- Shaking or hand mixing is not a good procedure!

Maintain sample representativeness

• Manual scooping produces more variable sub-sample composition

Reducing variability in DON test results

- Maximize sample representativeness by:
 - taking increments from the larger bulk to form a composite
 - grind samples before sub-dividing
 - use proper tools and procedures for mixing, grinding, and dividing
 - optimize sample size (laboratory sample and test portion)
- Must balance cost (time, equipment, etc.) with the benefit of a reduction in DON variance

